skip to main content


Search for: All records

Creators/Authors contains: "Lesk, Corey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The impact of extreme heat on crop yields is an increasingly pressing issue given anthropogenic climate warming. However, some of the physical mechanisms involved in these impacts remain unclear, impeding adaptation-relevant insight and reliable projections of future climate impacts on crops. Here, using a multiple regression model based on observational data, we show that while extreme dry heat steeply reduced U.S. corn and soy yields, humid heat extremes had insignificant impacts and even boosted yields in some areas, despite having comparably high dry-bulb temperatures as their dry heat counterparts. This result suggests that conflating dry and humid heat extremes may lead to underestimated crop yield sensitivities to extreme dry heat. Rainfall tends to precede humid but not dry heat extremes, suggesting that multivariate weather sequences play a role in these crop responses. Our results provide evidence that extreme heat in recent years primarily affected yields by inducing moisture stress, and that the conflation of humid and dry heat extremes may lead to inaccuracy in projecting crop yield responses to warming and changing humidity.

     
    more » « less
  2. Climate change necessitates a global effort to reduce greenhouse gas emissions while adapting to increased climate risks. This broader climate transition will involve large-scale global interventions including renewable energy deployment, coastal protection and retreat, and enhanced space cooling, all of which will result in CO 2 emissions from energy and materials use. Yet, the magnitude of the emissions embedded in these interventions remains unconstrained, opening the potential for underaccounting of emissions and conflicts or synergies between mitigation and adaptation goals. Here, we use a suite of models to estimate the CO 2 emissions embedded in the broader climate transition. For a gradual decarbonization pathway limiting warming to 2 °C, selected adaptation-related interventions will emit ∼1.3 GtCO 2 through 2100, while emissions from energy used to deploy renewable capacity are much larger at ∼95 GtCO 2 . Together, these emissions are equivalent to over 2 y of current global emissions and 8.3% of the remaining carbon budget for 2 °C. Total embedded transition emissions are reduced by ∼80% to 21.2 GtCO 2 under a rapid pathway limiting warming to 1.5 °C. However, they roughly double to 185 GtCO 2 under a delayed pathway consistent with current policies (2.7 °C warming by 2100), mainly because a slower transition relies more on fossil fuel energy. Our results provide a holistic assessment of carbon emissions from the transition itself and suggest that these emissions can be minimized through more ambitious energy decarbonization. We argue that the emissions from mitigation, but likely much less so from adaptation, are of sufficient magnitude to merit greater consideration in climate science and policy. 
    more » « less
  3. Abstract

    US maize and soy production have increased rapidly since the mid-20th century. While global warming has raised temperatures in most regions over this time period, trends in extreme heat have been smaller over US croplands, reducing crop-damaging high temperatures and benefiting maize and soy yields. Here we show that agricultural intensification has created a crop-climate feedback in which increased crop production cools local climate, further raising crop yields. We find that maize and soy production trends have driven cooling effects approximately as large as greenhouse gas induced warming trends in extreme heat over the central US and substantially reduced them over the southern US, benefiting crops in all regions. This reduced warming has boosted maize and soy yields by 3.3 (2.7–3.9; 13.7%–20.0%) and 0.6 (0.4–0.7; 7.5%–13.7%) bu/ac/decade, respectively, between 1981 and 2019. Our results suggest that if maize and soy production growth were to stagnate, the ability of the crop-climate feedback to mask warming would fade, exposing US crops to more harmful heat extremes.

     
    more » « less
  4. Abstract

    Extreme heat and drought often reduce the yields of important food crops around the world, putting stress on regional and global food security. The probability of concurrently hot and dry conditions, which can have compounding impacts on crops, has already increased in many regions of the globe. The evolution of these trends in coming decades could have important impacts on global food security. However, regional variation and the influence of natural climate variability on these trends remains an important gap in understanding future climate risk to crops. In this study, we examine trends in concurrent hot-and-dry extremes over global maize and wheat croplands since 1950. We find that the mean extent of cropland in a joint hot-and-dry extreme increased by ∼2% over 1950–2009, and this trend has accelerated substantially since the mid-2000s, notably in the tropics. While joint hot-and-dry seasons affected at most 1%–2% of global cropland per year during the mid-20th century, they regularly exceeded this extent after about 1980, affecting up to 5% of global crop area. These results suggest that the global climate is transitioning from one in which concurrent heat and drought occur rarely to one in which they occur over an important fraction of croplands every year. While these long-term global trends are primarily attributable to anthropogenic climate change, we find they have been suppressed by decadal climate variability in some regions, especially ones with chronic food insecurity. Potential reversals in these tendencies of decadal variability would accelerate exposure of croplands to concurrent heat and drought in coming decades. We conclude by highlighting the need for research and adaptive interventions around multivariate hazards to global crops across timescales.

     
    more » « less
  5. Abstract

    Intensive crop growth can modify regional climate by partitioning energy to latent heating through transpiration, cooling growing season temperatures. Recent work shows that cooling associated with agriculture can dampen anthropogenic warming over breadbasket regions. However, it is unknown whether climate models reproduce crop influences on regional climate, and thus the future risk of extreme climate events over global breadbasket regions. We show that models overestimate growing season temperatures and underestimate evapotranspiration (ET) over global croplands, and that these differences increase with cropped area. We trace this warm and dry difference through each model's representation of the surface energy budget, showing that model differences in transpiration, leaf area index, and the ratio of transpiration to total ET drive the overall effect. While the implications of these model deficiencies for future projections are uncertain, they point to the importance of improving representations of crop‐climate processes to better assess breadbasket vulnerability to climate change.

     
    more » « less
  6. Abstract Aim

    Populations of cold‐adapted species at the trailing edges of geographic ranges are particularly vulnerable to the negative effects of climate change from the combination of exposure to warm temperatures and high sensitivity to heat. Many of these species are predicted to decline under future climate scenarios, but they could persist if they can adapt to warming climates either physiologically or behaviourally. We aim to understand local variation in contemporary habitat use and use this information to identify signs of adaptive capacity. We focus on moose (Alces alces), a charismatic species of conservation and public interest.

    Location

    The northeastern United States, along the trailing edge of the moose geographic range in North America.

    Methods

    We compiled data on occurrences and habitat use of moose from remote cameras and GPS collars across the northeastern United States. We use these data to build habitat suitability models at local and regional spatial scales and then to predict future habitat suitability under climate change. We also use fine‐scale GPS data to model relationships between habitat use and temperature on a daily temporal scale and to predict future habitat use.

    Results

    We find that habitat suitability for moose will decline under a range of climate change scenarios. However, moose across the region differ in their use of climatic and habitat space, indicating that they could exhibit adaptive capacity. We also find evidence for behavioural responses to weather, where moose increase their use of forested wetland habitats in warmer places and/or times.

    Main conclusions

    Our results suggest that there will be significant shifts in moose distribution due to climate change. However, if there is spatial variation in thermal tolerance, trailing‐edge populations could adapt to climate change. We highlight that prioritizing certain habitats for conservation (i.e., thermal refuges) could be crucial for this adaptation.

     
    more » « less